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The dipole expansion technique for determining the grid charge density and the 
electrostatic forces due to a system of extended charges is presented. In this scheme a 
charge (monopole) and a dipole moment, both extended, are assigned to the nearest 
grid point. The corresponding calculations of the force require the determination of the 
electric field and its gradient. The approach aims to minimize the number of operations 
per particle at the expense of more operations per grid point. The technique is appealing 
on physical grounds, since it helps one to relate numerical approximations to physical 
concepts. 

We also present a modified version, the subtracted dipole scheme (SUDS). In this ver- 
sion the field calculations do not take significantly longer than in nearest-grid-point 
calculations. This is particularly important in two- and three-dimensional simulations. 
We also discuss an optimization of the coding, particularly for the operations that 
must be done for each particle (computing its contribution to the charge density and 
updating its position and velocity). For example, this optimization has given a onedimen- 
sional, nearest-grid-point code (lowest order in the multipole expansion scheme) that 
takes -1.8 p&particle on the IBM 360/91. We assess the value of the dipole correction 
by comparing dipole and nearest-grid-point simulations. Finally the relation between 
the dipole expansion (or SUDS) and charge sharing is discussed. 
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I. INTRODUCTION 

Computer simulations of plasma using particles presently employ extended 
charges rather than sheets, lines, or points of charge. The advantages of extended 
particles [l, 21 incude the reduction of grid noise, smoothing of short wavelength 
interactions, and reduction of collisions. Current simulation methods in wide use 
are nearest-grid-point (NGP) [3], particle-in-cell (PIC) [4], and cloud-in-cell (CIC) 
[5]. Here we will present the dipole expansion technique [6,7], a scheme which we 
have found very satisfactory in practice and which helps us to relate numerical 
approximations to physical concepts. 

In computing the forces between extended particles it is convenient to use a 
grid and then to: 

(1) assign the charge density of the particles to the grid points according to 
a rule such as: 

(a) assign the entire charge to the nearest grid point (NGP), 
(b) share the charge between two or more grid points according to an 

agreed algorithm; 

(2) calculate the electric field by solving Poisson’s equation; 

(3) determine the force on a particle according to a rule consistent with that 
used in (1). 

A particle of arbitrary shape should, to be exact, have its charge assigned to 
grid points over the entire support of the function describing the shape. This would 
lead to a rather inefficient algorithm for particle pushing. Instead of pursuing 
this path we recognize that the Fourier transform of the exact charge density 
possesses a systematic expansion in terms of transforms of multipole moments of 
the charge density. The moments for a given charge are calculated about its nearest 
grid point. In practice, as the title indicates, we have found the first two terms of 
this expansion sufficiently accurate. 

The technique has proven very satisfactory and has given detailed agreement 
with a Vlasov code [8]. Computationally the scheme favors more operations on 
each grid point over fewer operations on each particle. Since there are many more 
particles than grid points, this can be a useful trade-off. The analytic details are 
presented in Section II. 

A modified version of the dipole expansion technique, the subtracted dipole 
scheme or SUDS [9], has also been devised and is discussed in Section III. Here 
the field calculations do not take significantly longer than in nearest-grid-point 
calculations. We discuss in Section IV the implementation and optimization of 
the codes, in particular, the coding for those operations that must be done. for 
each particle (computing its contribution to the charge density and updating its 
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position and velocity). The value of the dipole correction is assessed by comparing 
dipole and nearest-grid-point simulations. Finally in Section V we comment on 
the relation of the dipole expansion technique (including SUDS) to charge-sharing 
schemes. 

II. THE DIPOLE APPROXIMATION 

As described in the Introduction each of the simulation particles has a finite 
extension to its charge distribution. The actual force law between two such particles 
has a rather complicated spatial dependence but its calculation can be carried out 
in three straightforward steps. These are the following: 

(1) Determination of the charge density; 
(2) Fourier analysis of the charge density followed by algebraic operations 

that convert it to the Fourier transform of the force field; 
(3) Fourier synthesis of the force field and determination of the force on any 

given particle. 

The Fourier transform (FT) method is particularly useful here inasmuch as the 
charge density and the force are given by convolution integrals in ordinary space; 
in Fourier space the equivalent operations are merely multiplications. The existence 
of the Cooley-Tukey Fast Fourier Transform algorithm is a further reason for 
using transform methods. 

Inasmuch as we can evaluate such quantities as charge density, force field, etc., 
only at a finite number of points such as the grid points, we must be able to properly 
assign the charge density of a particle to these points. We do this by expressing 
the charge density of each simulation particle as a multipole expansion about the 
grid point nearest to it. If we include only the lowest (i.e., monopole) terms we 
have a nearest grid point (NGP) estimate. Increased accuracy can be obtained by 
the inclusion of dipole terms which can be readily calculated. The force on each 
particle can be computed in a similar fashion with as many multipole terms kept as 
were required to calculate the charge density. 

Let us present some of the analytic details of the dipole approximation. We will 
illustrate the procedure in one dimension, since its extension to more dimensions 
is obvious. The charge density p, is given exactly by 

p(x) = c F(x - Xi) 0 (2.U 

where the summation is over all particles. The function F describes the charge 
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shape (form factor) of the extended particles. If E and p” are the FT’s of F and p 
respectively, then we can write p”(k) = p(k) in the form 

(2.2) 

In this last form X, represents the position of the g-th grid point and 
dxi = xi - X, is the distance between the i-th particle and the grid point nearest 
to it. The innermost sum is over all particles in the g-th cell and is proportional 
to the n-th multipole moment of those charges with respect to the center of the cell. 
The intermediate sum is over the N cells and is the finite Fourier transform of the 
corresponding multipole moments. Finally the outermost sum is over the multipole 
moments. 

In the dipole approximation then we rewrite (2.1) as: 

d-4 = c F(x, - x> PNGdd + F’w, - 4 p&)1; 
9 

(2.3a) 

PNGPW = c 1; 
iEfJ 

(2.3b) 

P&d = 1 (Xi - x7). (2.3~) 
iq 

We have assumed that F is an even function. 
The force on an extended particle is determined in the same manner. Starting 

with 

F(xJ = e 1 E(x) F(xi - x) dx, 

=e s E(xi + x) F(x) dx 

as the force on the i-th particle we expand the electric field about the grid point 
nearest the i-th particle to obtain the dipole approximation to the force: 

F,(xi) = j. F(x)[E(x + &,) + (xi - X,)(=(x + &)/W,)l dx. (2.4) 

The force calculation in the dipole scheme is based directly on Eqs. (2.3) and 
(2.4) and on Poisson’s equation 

V-E=--hp 

and is performed in the following steps: 

(2.5) 
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(1) The monopole (p NGP) and dipole (p& densities are calculated at the grid 
points using (2.3). 

(2) The Fourier components of these densities are calculated using the 
discrete Fourier transform. 

(3) The Fourier components of the monopole (Fl) and dipole (F2) contri- 
butions to the electrostatic force field are computed: 

Note that p2 occurs in the force whereas only one factor of P is needed to compute 
the Fourier component of the electric field. 

(4) After inversion of the transforms the force on a given particle is propor- 
tional to 

wK7) + (Xi - -a m&), 

where once more X, is the grid point nearest the particle. 

In a two-dimensional simulation one would need to compute at least eight FT’s. 
These include the Fourier transforms of PNGp and pD and then the inverse transform 
of the two components of the monopole forces and finally at least three of the four 
components of the dipole terms in the force. One might think that two rather than 
one contribution to the dipole terms in the force could be eliminated by use of the 
Maxwell equations: 

(a&&w + wway> = -hp, 
aqar = aEyjaX. 

However, the calculation of p(x), including both dipole and monopole terms, 
requires a separate FT. The calculation of these gradients in two or three dimen- 
sional simulations is time consuming and we present, in the next section, an 
alternative algorithm for use with the dipole approximation. 

III. SUBSTRACTED DIPOLE SCHEME (SUDS) 

The modification we present relates to the grid calculation and reduces the 
number of Fourier transforms to a minimum [9]. The basic new feature is that we 
approximate derivatives appearing in higher-order expansion terms by differences 
over the cells. The error incurred represents a correction to a correction, and hence 
is higher order in the expansion parameter. We again illustrate the procedure in 
one dimension. As in Section II, we consider a collection of finite-size particles. 
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Recall that the charge density in the dipole approximation was given by 

P(X) = c c [FCX - x7) - dXi F’(x - XJ + 0 ($-g)] B iw 
Truncating the expansion at the dipole term incurs an error or order (l/10) P/u2, 
where 8 is the cell size and a the effective size of the particle. 

The charge density can now be Fourier-transformed, but this means that the 
correction (ie., dipole) term involves computation of additional transforms (N 
more in an N-dimensional simulation). Let us instead approximate the derivative 
of the form factor by using a centered difference over the adjacent cells: 

then, 
F’(x - X,) = ((F(x - AT,+,) - F(x - X&)/26) + Op2/a2). 

P(X) = JW - &NP NGP + (1/2@hJ(g + 1) - pD(g - I)]). 

The charge density can now be Fourier-transformed simply by making one trans- 
form of the modified array shown in braces. In this way we save one, two, or three 
transforms, depending on the dimensionality of the problem. 

Figure 1 shows the two functions 

f'(x) and (f(x + 1) -f(x - w/z 

where f(x) = exp - (x2/2) and indicates the nature of the approximation for 
what would be the worst case in practice; namely, the particle width equal to a 
cell size. In physical terms we are replacing the dipole d *f’(x) by a dipole which 
consists of two extended charges f (x), of equal but opposite charge (d/26), a distance 
of 28 apart. The dipole moments of these two charge distributions agree, but the 
higher moments differ. 
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Frc. 1. Comparison of the derivative of a Gaussian curve with the difference of two Gaussian 
curves whose centers are two cells apart. The Gaussian half-width is equal to a cell size. 
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The same technique is used when we expand the electric field to determine the 
force on the particle. The net force on the particle is given by the monopole moment 
times the electric field plus the dot product of the dipole moment and the gradient 
of the electric field. By approximating the derivatives of the field using central 
differences, we again avoid performing Fourier transforms to compute those 
derivatives. This saves two additional transforms in two-dimensional, and five 
in three-dimensional simulations. Of course, we must perform some additional 
operations to difference the various quantities, but the number of Fourier trans- 
forms now required is the same as in nearest-grid-point calculations. 

IV. IMPLEMENTATION AND OPTIMIZATION 

A. The Basic Dipole Approximation 

The basic dipole scheme has been implemented and has proven very satisfactory. 
For example, we have tested the code by running out and reversing a violent 
two-stream instability. We use lo4 particles in a one-dimensional system 256 
Debye lengths long. The result is shown in Fig. 2. The top of the figure shows 
phase space at wset = 5. We see the two Maxwellian beams, separated in velocity 
by 6 thermal velocities. The instability exponentiates many times, making the field 
energy -5 % of the total energy. Even so, the code conserved energy to within 
4.03 %.The center of the figure shows phase space at wset = 35. The instability 
has saturated; vortices have formed and are beginning to coalesce. 

At this time we reverse the velocities of the particles. Finally, the bottom of the 
figure shows phase space after the system has traced itself back in time to wset = 5. 
The top and bottom pictures are identical in detail (reversing the velocities inter- 
changes the top and bottom beams). This test gives a good check on the numerical 
stability of the code as well as checking the accuracy of the programs and errors due 
to round off. 

For a more interesting application of the code we have investigated the effective 
collision frequency in a plasma of finite-size charged rods (two-dimensional 
charges). To do this we have measured the collisional damping of plama oscillations. 
Working with a thermal equilibrium plasma we compute the time correlations of 
the E field for the Fourier modes; that is, we average E,(t) &(t + T) over t. The 
correlation function is a slowly decaying oscillation: the frequency of the oscillation 
yields the frequency of the plasma mode and its decay gives the damping (for long 
wavelength modes this is collisional damping). 

For these runs we used a two-species plasma in a system 32h, by 32X, (where 
h, is the Debye length). We varied both the particle size and the total number of 
particles used. The results for a number of runs are shown in Fig. 3, where we have 
plotted collision frequency versus the ratio of the particle size to the Debye length. 
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FIG. 2. Phase space plot of a strong two-stream instability calculated by the dipole method. 
The lowest portion arises from the middle part by time reversal. 

The upper curve is for the number of particles per Debye circle equal to five, and 
the lower curve for that number equal to 15. The R = 0 points are taken from an 
empirical formula deduced by Hackney [IO] from a large number of runs with 
essentially zero-size particles. The reduction of collision frequency with increasing 
particle size is evident. A particle size of h, leads to a reduction of about a factor 
of 10. The magnitude of this reduction agrees with the calculations of Okuda [2]. 
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FIG. 3. Collision frequency versus particle size. 

B. SUDS 

The modified version of the dipole scheme has also been implemented and has 
given close agreement with the usual dipole technique. As a simple example, we 
consider a two-dimensional simulation of a thermal equilibrium plasma. The 
system consists of 5000 particles in a doubly periodic system (8X, by 8h,). Figure 4 
shows a comparison of energy conservation for all three techniques: NGP, dipole, 
and modified dipole. Energy conservation is quite good for both dipole techniques, 
and is an order of magnitude better than that for NGP. 

The grid calculation is observed to be nearly twice as fast in the modified dipole 
version for this two-dimensional simulation. Furthermore, the grid calculation 
has been speeded up by an additional factor of -4 through the use of an optimized 
Fourier transform package. For example, in -0.15 set on the IBM 360/91 we can 
now Fourier-transform the charge density on a 64 by 64 grid, convert to the Fourier 
components of E, and EY , and invert the transform to find the fields. 

We have concentrated on discussing the field calculations, since the technique 
for doing these has been modified. For completeness, let us now briefly discuss 
the time required for the operations that must be performed for each particle 
(computing its contribution to the charge density and updating its position and 
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FIG. 4. A comparison of energy conservation in NGP, dipole, and SUDS simulations of a 
plasma in thermal equilibrium. 

velocity). At Princeton a two-dimensional NGP code (lowest order in the multipole 
expansion) has been developed which requires for one time step N4 psec/particle 
on the IBM 360/91 [l I]. In this code the two particle coordinates are packed into 
one double word, and similarly for the two components of the velocity [12]. In a 
similar code, one of the authors (B. R.) has developed a one-dimensional NGP 
code that takes -1.8 pseclparticle. In this latter code each particles’s velocity and 
position are packed into one double word. Both of these codes take advantage of 
the architecture of the IBM 360/91. In particular, such features as the double-word 
fetch and the parallel execution of tied and floating point instructions are exploited. 
A dipole version of this optimized one-dimensional code requires -4 psec/particle. 

C. Comparison of Dipole and NGP Simulations 

Finally, let us indicate the value of the dipole correction (or any charge-sharing 
type of correction) by comparison with simulations using the nearest-grid-point 
approximation. It is particularly convenient to do this in the dipole expansion 
scheme, since NGP is simply zero order in this expansion. In the following examples 
we use the modified dipole technique. 

First we consider a strong two-beam instability-two Maxwellian beams 
separated by 4(2)lj2 thermal velocities [13]. We use 5000 particles in a doubly 
periodic system (32X, by 32&J. This is a convenient problem for numerical tests, 
but of course we would use both a larger grid and more particles to investigate 
the physics with confidence. Figure 5 shows the total electrostatic wave energy for 
both the dipole and NGP simulations. This energy exponentiates to ~2.6 % of the 
total energy. The NGP results agree reasonably well with the dipole results. In the 
course of the simulation, the energy for the NGP solution varies from the initial 
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FIG. 5. Wave energy versus time compared for dipole and NGP simulations of a strong 
two-beam instability. 

total energy of the system by -0.2 %, but this is adequate to quantitatively follow 
the gross behavior of this rapidly growing instability. 

However, let us now investigate a weaker instability. We consider a small beam 
moving at 6.4 thermal velocities in a Maxwellian plasma. The ratio of the beam 
density to the background plasma is ~0.25 %. The main plasma contains 19,000 
simulation particles and the beam contains 1000 particles, each with 0.05 of the 
charge and mass of a plasma particles. The system is one-dimensional with a 
periodicity length of 256X, . 

FIG. 6. Dipole and NGP results for (a) the total energy versus time and (b) the electrostatic 
energy versus time for a weak two-beam instability. 
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Figure 6 shows both the electrostatic wave energy and the change in the total 
energy versus time for both of the techniques. The wave energy at wpet = 120 
has grown to -1.2 % of the initial total energy of the system. The NGP result 
agrees qualitatively with the dipole result, but it does not agree quantitatively. 
Indeed, by wpet -100 the total wa2re energies in the two solutions differ by -25 %. 
This quantitative disagreement is not surprising when we note that the energy 
conservation for NGP is rather poor in this case. The total energy deviates by 
4.8 % from the initial total energy, while the wave energy becomes -1.2 %. 
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FIG. 7. A comparison of phase space W,,J = 118 for NGP and dipole simulations of a weak 
two-beam instability. 
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Figure 7 shows a comparison of phase space at w,,t = 118 for both of the 
techniques. We see quite noticeable differences, showing that significant errors have 
accumulated in the particle orbits in the NGP solution. (The phase space plots in 
the dipole and the modified dipole solutions agree closely.) 

V. THE DIPOLE APPROXIMATION AND CHARGE-SHARING 

In this last section let us briefly comment on the relation between the dipole 
expansion technique (or SUDS) and charge sharing. The multipole expansion 
scheme, when truncated at the dipole order, is of course similar to the usual charge- 
sharing techniques. Indeed these latter schems, in effect, apportion the charge on 
the grid in such a way as to conserve both the monopole and dipole moments of the 
original charge (plus in general parts of higher order moments). The way to do this 
is not uniquely defined and corresponds to our freedom to approximate the deriv- 
ative terms in various ways. 

From a computational viewpoint our technique has both advantages and dis- 
advantages. Basically we emphasize a minimization of the number of operations 
per particle. This can be quite important for simulations in more than one dimen- 
sion. In two (three) dimensions the specification of the charge and dipole moment 
of a particle requires the assignment of a monopole moment and two (three) dipole 
moment components to the nearest grid point. In contrast, the usual charge 
sharing methods assign a portion of the charge to four (eight) different grid points. 
There are similar economies in the force calculations. 

On the other hand, the dipole scheme yields a less smooth interpolation from the 
grid to the particles (and vice versa) than does conventional charge sharing. As 
Langdon has pointed out, in the dipole scheme the force on a particle has a small 
discontinuity at the cell boundaries. The magnitude of this discontinuity across 
the right-hand boundary of the I-th cell, for example, is 

VT0 + w9 W)l - Fv + 1) - @/2) fv + 111 

where F and F’ are the values of the force and its dope at the indicated grid points. 
Note that in using the dipole approximation we have used two data defined at one 
grid point, viz., F(x) and F’(x), to calculate the force whereas charge sharing used 
two data, F(x) and F(x + dx) say, each from a different grid point. Figure 8 
shows the difference in the two methods graphically. Alternatively one might say 
that in effect charge sharing uses functional values and two-sided slopes at each 

1 We use the work slope here to mean the actual derivate in the dipole scheme proper or the 
difference formed in SUDS. 
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CHARGE SHARING 

f RUE FORCE 

FIG. 8. Comparison of forces given by dipole method and charge sharing. 

grid point to represent a function polygonally whereas the dipole approximation 
uses functional values and a symmetric slope to represent a function piecewise. 

In the SUDS form, which is most akin to charge sharing, the weight function 
W,(X) which interpolates the particle density onto the grid is shown in Fig. 9. 
Its Fourier transform is given by 

G,,(k) = -(l//3) + (l/p”) sin /3 cos 28; /I = k8/2. 

Because W,(X) has a discontinuity in its value, G,(k) falls off asymptotically as l/k, 
i.e. in a manner similar to that of NGP weighting function. 

Slight modifications to SUDS can improve the interpolation of quantities on 
the grid, while retaining most of the economies. For example, one can adopt the 

FIG. 9. The weight function used in the SUDS algorithm. 

581I1311-9 
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weighting function w,(x) shown in Fig. 10. In one dimension, of course, this 
weight function is the average of two PIC weight functions shifted by the grid 
spacing. Once again the net moments rather than the individual particle moments 
are shared but in this case both the monopole and dipole moment are distributed. 

FIG. 10. Proposed modified weight function to be used in SUDS. 

Finally we would like to mention a hybrid version of SUDS in which the force 
calculation is very nearly NGP while the charge calculation is as before. Usually 
such schemes exhibit a lack of momentum conservation because of the inequality 
between action and reaction. If, however, we consider the total force on the N, 
particles in the g-th cell then SUDS would predict this to be 

z [W&J + AXi . F’KJI. 

However, we can write this as 

Since the value of the slope is derived in SUDS by a differencing procedure we can 
interpret this formula as “field-sharing” or applying an average dipole correction 
to each particle in a cell. The field quantity in brackets is used to accelerate every 
particle in the cell. We can look upon it also as the field at the center of charge 
in the cell since the bracketed term can be regarded as approximately 

SUMMARY 

We have presented the dipole expansion technique for particle simulation of 
plasmas. This technique is a physical way to introduce the spatial grid and helps one 
to relate numerical approximations to physical concepts. The approach aims to 
minimize the number of operations per particle at the expense of more operations 
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per grid point. A modified version of the dipole expansion technique is also 
presented. Here the number of Fourier transforms is minimized, so that the field 
calculations do not take significantly longer than in NGP calculations. 

The implementation and optimization of these codes have been discussed, as 
well as their relationship to other techniques. NGP and dipole results have been 
compared for several simple problems. These comparisons show that NGP gives 
adequate results for strong instabilities and rapid evolution but is poor for treating 
weak instabilities or more subtle aspects of plasma dynamics. The dipole and SUDS 
methods are capable of handing fairly subtle behavior. 
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